

Микросхема приемопередатчика интерфейса CAN К5559ИН14AFI, К5559ИН14БFI, К5559ИН14BFI

ГГ – год выпуска НН– неделя выпуска

Основные характеристики микросхемы:

- Соответствует стандарту ISO 11898-2;
- ⁸ Напряжение питания от 4,5 до 5,5 В;
 - Защита выходов передатчика ± 40 В от короткого замыкания и перегрева для применения в 12/24 В автомобильных и промышленных системах управления;
- Быстродействующий дифференциальный приемник с диапазоном входного синфазного напряжения от минус 10 до плюс 10 В;
- Четыре режима работы:
 - режим «Нормальный», максимальная скорость передачи данных до 1 Мбит/с;
 - режим «Контроль скорости нарастания/ спада выходного дифференциального напряжения передатчика» для улучшения электромагнитной совместимости, скорость передачи данных от 62,5 до 500 Кбит/с;
 - режим «Ожидание» с пониженным потреблением;
 - режим «Выключено»;
- Входы ТХD, SHDN и nSHDN совместимы с 3,3 В логическими уровнями;
- Тепловое сопротивление кристалл-корпус не более 25 °C/Вт;
- Уровень чувствительности к влаге MSL 2;
- Рабочий диапазон температур от минус 40 °C до плюс 125 °C.

Тип корпуса:

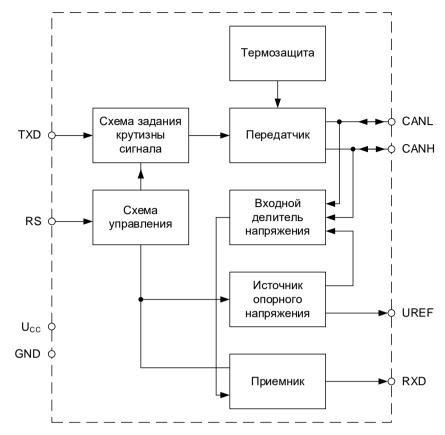
8-выводной пластмассовый корпус DFN8 5×6×0,75 (1,27).

Общее описание и области применения микросхемы

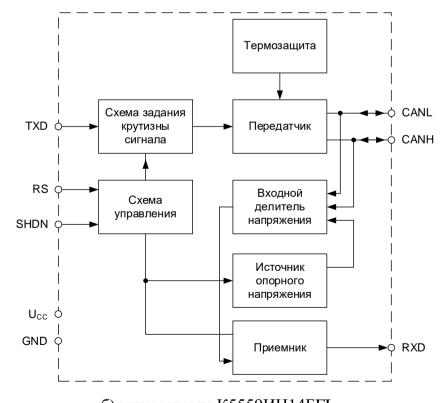
Микросхемы интегральные К5559ИН14AFI, К5559ИН14BFI (далее — микросхемы) представляют собой приемопередатчик интерфейса CAN и предназначены для организации полудуплексного канала связи с максимальной скоростью передачи данных до 1 Мбит/с.

Микросхемы доступны в трех исполнениях:

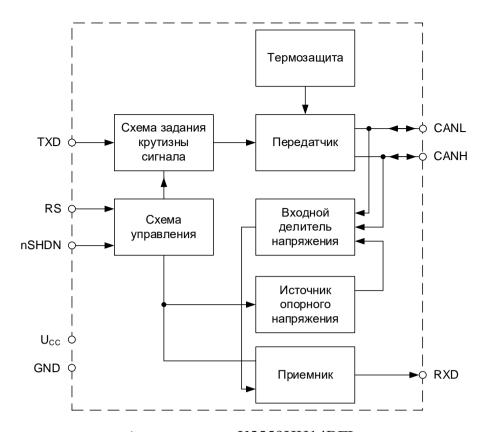
- с выходом опорного напряжения UREF микросхемы К5559ИН14AFI;
- с входом управления режимом «Выключено» SHDN микросхемы К5559ИН14БFI;
- с входом управления режимом «Выключено» nSHDN микросхемы К5559ИН14BFI.


Основные области применения: автомобильные и промышленные системы управления.

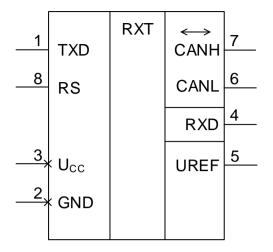
Важно: микросхемы чувствительны к влажности. Порядок обращения должен соответствовать требованиям, приведенным в ТСКЯ.430106.004Д12.


Содержание

1	Структурные блок-схемы	3
2	Условные графические изображения	5
3	Описание выводов	6
4	Указания по применению и эксплуатации	7
5	Описание функционирования	8
	5.1 Защита от перенапряжения и электростатического разряда	8
	5.2 Защита от превышения тока	8
	5.3 Приемник CAN	8
	5.4 Передатчик CAN	8
	5.5 Таблица истинности и режимы работы	9
	5.6 Режим «Нормальный»	10
	5.7 Режим «Контроль скорости нарастания/спада выходного сигнала»	10
	5.8 Режим «Ожидание»	10
	5.9 Режим «Выключено» для микросхем К5559ИН14БFI, К5559ИН14BFI	11
	5.10 Выход источника опорного напряжения UREF	11
6	Типовая схема включения микросхем	12
7	Типовые зависимости	13
8	Электрические параметры	14
9	Предельно-допустимые характеристики	17
10	Справочные параметры	18
11	Габаритный чертеж	19
12	Информация для заказа	20


1 Структурные блок-схемы

а) микросхемы К5559ИН14AFI


б) микросхемы К5559ИН14БFI

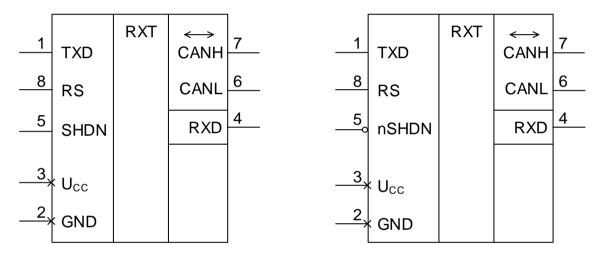

в) микросхемы К5559ИН14BFI

Рисунок 1 – Структурные блок-схемы микросхем

2 Условные графические изображения

а) микросхемы К5559ИН14АFI

б) микросхемы К5559ИН14БFI

в) микросхемы К5559ИН14BFI

Рисунок 2 – Условные графические изображения микросхем

3 Описание выводов

Таблица 1 – Описание выводов

Номер	Условное	Описание	
вывода	обозначение		
1	TXD	Вход передатчика	
2	GND	Общий	
3	Ucc	Питание	
4	RXD	Выход приемника	
	HDEE	Для микросхемы K5559ИH14AFI	
	UREF	Выход источника опорного напряжения	
5	SHDN	Для микросхемы K5559ИH14БFI	
3		Вход управления режимом «Выключено»	
		Для микросхемы K5559ИH14BFI	
		Вход управления режимом «Выключено»	
6	CANL	Вход приемника/выход передатчика.	
0	CANL	Низкий логический уровень	
7	CANH	Вход приемника/выход передатчика.	
/	CANH	Высокий логический уровень	
8	RS	Вход выбора управления режимом работы	
O	KS	«Нормальный» / «Ожидание» / «Контроль скорости»	

4 Указания по применению и эксплуатации

Указания по режимам и условиям монтажа микросхем согласно ТСКЯ.430106.004Д12.

Выводы микросхем обеспечивают способность их к пайке при температуре 220 °C.

Типовая схема включения микросхем приведена на рисунке 4.

Рекомендуется подключать установочную площадку корпуса к шине «Общий».

Необходимо использовать развязывающий конденсатор емкостью 0,1 мкФ между выводами «Общий» и «Питание». Конденсатор следует располагать как можно ближе к микросхеме.

Запрещается подведение каких-либо электрических сигналов (в том числе шин «Питание» и «Общий») к выводу 5 для К5559ИН14АFI, если он не используется.

Неиспользуемый логический вывод 8 рекомендуется подключить к GND.

Неиспользуемый логический вывод 5 для K5559ИH14БFI рекомендуется подключить к шине «Общий».

Неиспользуемый логический вывод 5 для K5559ИН14BFI рекомендуется подключить к шине «Питание».

Порядок подачи и снятия напряжения питания и входных сигналов на микросхему:

- подача (включение микросхемы) «Общий», «Питание», входные сигналы или одновременно;
 - снятие (выключение микросхемы) одновременно или в обратном порядке.

5 Описание функционирования

Микросхемы являются интерфейсными интегральными схемами между CAN -контроллером и физической линией передачи данных. Применяются для высокоскоростной дифференциальной передачи данных в соответствии с стандартом ISO 11898-2. Настраиваемая скорость передачи данных до 1 Мбит/с.

5.1 Защита от перенапряжения и электростатического разряда

Выходы передатчика имеют защиту от короткого замыкания на потенциалы от минус 40 до плюс 40 В. Защита от электростатического разряда соответствует уровням $HBM = 2 \ \kappa B$, $MM = 200 \ B$. Реализованная защита от перенапряжения выводов CANH/CANL позволяет применять микросхемы в бортовых сетях 12 и 24 В и различных индустриальных приложениях.

5.2 Защита от превышения тока

В схеме передатчика реализовано два механизма защиты:

- ограничение выходного тока;
- защита от перегрева.

В случае короткого замыкания выходов передатчика ток ограничивается значениями I_{OS_CANL} для CANH и CANL соответственно.

Схема защиты от перегрева срабатывает при температуре кристалла около 165 °C и переводит схему передатчика в состояние «Выключено». Гистерезис порога включения порядка 15 °C. Приемник при этом активен.

5.3 Приемник CAN

Выход RXD приемника CAN активен во всех режимах работы схемы. Выходное напряжение высокого уровня соответствует рецессивному состоянию на линии передачи, а также режиму «Выключено». Выходное напряжение низкого уровня соответствует доминантному состоянию на линии передачи.

Приемник рассчитан на прием данных со скоростью до 1 Мбит/с. Приемник имеет входной фильтр, что повышает стойкость приемника к дифференциальным помехам.

5.4 Передатчик САN

Вход передатчика TXD получает последовательный поток данных от контроллера протокола CAN.

Вход ТХD имеет внутреннюю подтяжку к питанию, которая устанавливает на входе передатчика логическую «1». При подаче логической «1» на вход ТХD выходы передатчика CANH/CANL находится в рецессивном состоянии, при котором напряжение $U_{CANH}/U_{CANL} = U_{REF} = U_{CC}/2$ и внутренний импеданс составляет 27 кОм. При подаче логического нуля на вход ТХD выходы передатчика CANH/CANL создают доминантный уровень на шине. Выходной драйвер содержит источник тока, подключённый к CANH, и приемник тока, подключенный к CANL.

5.5 Таблица истинности и режимы работы

Таблица истинности работы микросхем приведена в таблице 2.

Таблица 2 – Таблица истинности работы микросхем

TXD	RS	SHDN (для K5559ИН14БFI)	nSHDN (для K5559ИН14BFI)	CANH	CANL	Состояние линии передачи	RXD
0	$U_{RS} < 0.75 \cdot U_{CC}$	0 или F	1 или F	Высокий Низкий выходной уровень уровень		Доминантное	0
1 E	F U_{RS} < 0,75 \cdot U_{CC}	_{RS} < 0,75·U _{CC} 0 или F	1 E	$U_{TH} \ge 0.9 B$		Доминантное	0
или г			1 или F	U _{TH} ≤	0,5 B	Рецессивное	1
X	$U_{RS} \ge 0.75 \cdot U_{CC}$	0 E	1 E	U _{TH} ≥ 0,9 B		Доминантное	0
A	или F	или F 0 или F	1 или F	U _{TH} ≤ 0,5 B		Рецессивное	1
X	X	1	0	Высокий импеданс		X	1

Обозначения в таблице:

Х – состояние вывода не имеет значения;

F – вывод не подключен;

0 – низкий логический уровень;

1 – высокий логический уровень

Режимы работы микросхем:

- режим «Нормальный»;
- режим «Контроль скорости нарастания/спада выходного сигнала»;
- режим «Ожидание»;
- режим «Выключено» (для микросхем К5559ИН14БFI, К5559ИН14BFI).

Выбор режима работы передатчика CAN определяется уровнем сигнала на управляющем выводе RS (см. таблицу 3) или сопротивлением резистора, подключенного ко входу RS. Вывод RS имеет внутреннюю схему доопределения до шины «Питание».

Таблица 3 – Режимы работы передатчика CAN

Состояние входа RS	Режим работы
$U_{RS} < 0.3 \bullet U_{CC}, R_{RS} = 01,8$ кОм	Нормальный
$0.4 \bullet U_{CC} < U_{RS} < 0.6 \bullet U_{CC}, R_{RS} = 24180$ кОм	Контроль скорости нарастания/спада выходного сигнала
$U_{RS} > 0.75 \bullet U_{CC}$ или не подключен	Ожидание
Примечания	

1 U_{RS} – напряжение на входе RS;

2 R_{RS} – резистор, подключенный ко входу RS

5.6 Режим «Нормальный»

Режим «Нормальный» задается уровнем сигнала на RS в диапазоне от GND до $0,3\cdot U_{CC}$. При этом выходы передатчика переключаются с максимально возможной скоростью для обеспечения передачи данных до 1 Мбит/с.

5.7 Режим «Контроль скорости нарастания/спада выходного сигнала»

Режим «Контроль скорости нарастания/спада выходного сигнала» предусмотрен с целью уменьшения уровня электромагнитных помех в линии передачи, а также отражений при неидеально согласованной шине. Для выбора данного режима необходимо подключить резистор между входом RS и шиной «Общий». В этом режиме номинал резистора определяет величину скорости нарастания/спада выходного сигнала. Таким образом обеспечивается стабильная передача информации со скоростью от 62,5 до 500 Кбит/с.

Величину подключаемого резистора можно рассчитать по формуле

$$R_{RS}$$
 [кОм] =
$$\frac{12000 \left[\text{кОм} \cdot \text{Кбит/c} \right]}{\text{Скорость передачи [Кбит/c]}}$$
 (1)

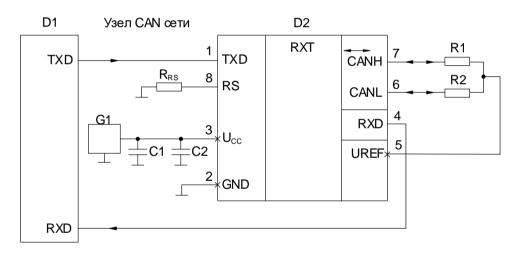
Зависимость скорости передачи данных от сопротивления приведена в таблице 4.

R _{RS} , кОм	Скорость передачи, Кбит/с
24	500
47	250
100	125
180	62,5

Таблица 4 – Зависимость скорости передачи данных от сопротивления

5.8 Режим «Ожидание»

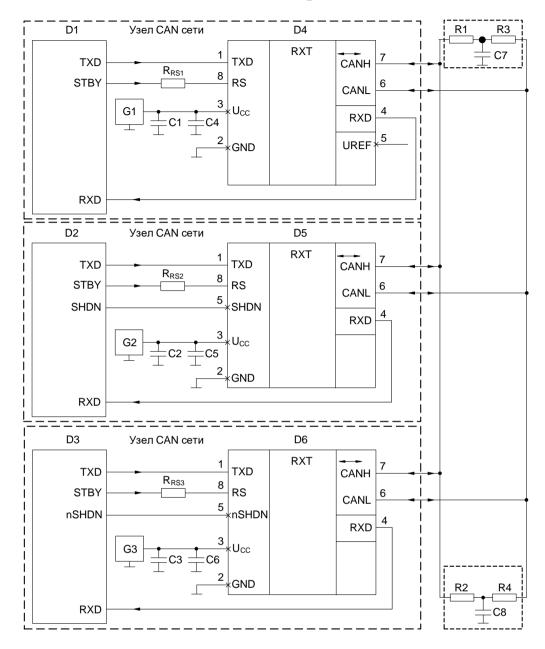
Режим «Ожидание» предназначен для снижения энергопотребления в первую очередь при батарейном питании. Микросхема переходит в данный режим при неподключенном выводе RS или, когда потенциал на нем более $0.75 \cdot U_{CC}$. В данном режиме передатчик полностью выключается, а приемник остается активным, и его потребление снижается. По этой причине в режиме «Ожидание» приемник работает медленнее, чем в режиме «Нормальный», и первое сообщение (при высоких скоростях передачи) может быть пропущено. При появлении доминантного состояния на линии передачи приемник выдает низкий логический уровень на выходе RXD, сигнализируя микроконтроллеру о необходимости переключения приемопередатчика в режим «Нормальный» (по входу RS).


5.9 Режим «Выключено» для микросхем К5559ИН14БFI, К5559ИН14ВFI

При появлении на входе SHDN (для K5559ИH14БFI) или nSHDN (для K5559ИH14BFI) активного логического уровня приемопередатчик переходит в режим «Выключено» с током потребления, не превышающим 30 мкА. В данном режиме схема приемопередатчика полностью выключается и не оказывает влияния на линию передачи. Выход RXD переходит в состояние с высоким логическим уровнем. Вход SHDN/nSHDN имеет внутреннею подтяжку к пассивному логическому уровню. В отсутствии подключения входа SHDN/nSHDN схема приемопередатчика находится в одном из рабочих режимов, заданных входом RS.

5.10 Выход источника опорного напряжения UREF

В микросхемах K5559ИH14AFI вывод опорного уровня UREF предназначен для подавления синфазной помехи в линии CAN посредством обеспечения низкоомной нагрузки для шумов, производимых передатчиками либо внешними источниками.


Для подавления синфазных помех выход UREF необходимо подключить к шине между двумя терминирующими резисторами, сопротивлениями вдвое меньше волнового сопротивления в линии. При этом вывод UREF подключается в соответствии с схемой включения, приведенной на рисунке 3.

- C1 конденсатор емкостью 47 мк $\Phi \pm 10 \%$;
- С2 конденсатор емкостью 0,1 мк $\Phi \pm 10 \%$;
- D1 CAN-контроллер;
- D2 включаемая микросхема К5559ИН14AFI;
- G1 источник постоянного напряжения, $5.0 B \pm 10 \%$;
- R1, R2 резисторы внешнего терминирования сопротивлением 60 Ом;
- R_{RS} резистор сопротивлением:
 - от 0 до 1,8 кОм режим «Нормальный»,
 - от 24 до 180 кОм режим «Контроль скорости»,
 - более 180 кОм или не подключен режим «Ожидание»

Рисунок 3 – Типовая схема подключения выхода UREF

6 Типовая схема включения микросхем

- C1-C3 конденсаторы емкостью 47 мк $\Phi \pm 10$ %;
- C4 C6 конденсаторы емкостью 0,1 мк $\Phi \pm 10$ %;
- C7, C8 конденсаторы емкостью $10 \text{ н}\Phi \pm 10 \text{ %};$
- D1 D3 CAN-контроллеры;
- D4 включаемая микросхема К5559ИН14AFI;
- D5 включаемая микросхема К5559ИН14БFI;
- D6 включаемая микросхема К5559ИН14BFI;
- G1 G3 источники напряжения питания, 5,0 B ± 10 %;
- R1 R4 резисторы внешнего терминирования сопротивлением 60 Ом;
- $R_{RS1} R_{RS3}$ резисторы сопротивлением:
 - от 0 до 1.8 кОм режим «Нормальный»,
 - от 24 до 180 кОм режим «Контроль скорости»,
 - более 180 кОм или не подключен режим «Ожидание»

Рисунок 4 – Типовая схема включения микросхем

7 Типовые зависимости

Раздел находится в разработке.

8 Электрические параметры

Таблица 5 – Электрические параметры микросхем при приёмке и поставке

Наименование параметра,	ное ение :тра	Норма параметра		атура ı, °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное напряжение высокого уровня				
приемника, В,	U_{OH_RXD}	$0.8 \cdot U_{CC}$	U_{CC}	
при: $I_O = -1$ мА				
Выходное напряжение низкого уровня приемника,				
В,	Uol_rxd	0	0,2·Ucc	
при: $I_O = 1$ мА				
Входное напряжение режима контроля скорости				
нарастания/спада выходного дифференциального	U _{I_SLOPE}	$0.4 \cdot U_{CC}$	0,6·U _{CC}	
напряжения передатчика, В,	C I_SLOPE	0,1000	0,0 000	
при: $R_{RS} = (24 - 180)$ кОм				
Выходное напряжение передатчика, В,	Uo_canh_rec	2,0	3,0	
рецессивное состояние, без нагрузки	U _{O_CANL_REC}	2,0	3,0	
Выходное напряжение передатчика, В,	Uo_canh_dom	2,75	4,5	
доминантное состояние, выход CANH	OO_CANH_DOM	2,73	7,5	
Выходное напряжение передатчика, В,	Uo_canl_dom	0,5	2,25	
доминантное состояние, выход CANL	UO_CANL_DOM	0,5	2,23	
Выходное дифференциальное напряжение				25,
передатчика, В,		1,5	3,0	125,
доминантное состояние,	U _{O_DIFF_DOM}			-40
при: $R_L = 45 \text{ Om}$,				
при: $R_L = 60 \text{ Om}$				
Выходное дифференциальное напряжение				
передатчика, мВ,	U _{O_DIFF_REC}	-500,0	50,0	
рецессивное состояние, без нагрузки				
Ток потребления, мА,				
доминантное состояние,	I _{CC_DOM}	_	60,0	
при: $U_{TXD} = 0 B$, $U_{RS} = 0 B$				
Ток потребления, мА,				
рецессивное состояние,	I _{CC_REC}	_	15,0	
при: $U_{TXD} = U_{CC}$, $U_{RS} = 0$ В				
Ток потребления, мА,				
режим «Ожидание»,	I _{CC_STBY}	_	1,0	
при: $U_{RS} = U_{CC}$				
Входной ток высокого уровня передатчика, мкА	I _{IH_TXD}	- 10,0	10,0	
Входной ток низкого уровня передатчика, мкА	I _{IL_TXD}	-150,0	- 10,0	

Наименование параметра,	ное зние гра	-	Норма параметра		
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С	
Ток короткого замыкания выхода приемника, мА, при: $0 \ B < U_O < U_{CC}$	I_{OS_RXD}	- 35,0	35,0		
Входной ток режима «Нормальный», мкА, при: $U_{RS} = 0$ В	I_{I_RS}	- 500,0	- 100,0		
Входной ток режима «Ожидание», мкА, при: $U_{RS} = U_{CC}$	I_{I_STBY}	- 10,0	10,0		
Ток утечки выхода передатчика, мА, рецессивное состояние, без нагрузки, при: $-40~\mathrm{B} \leq (\mathrm{U_{O_CANH}}, \mathrm{U_{O_CANL}}) \leq 40~\mathrm{B}$	I _{L_CANH_REC} I _{L_CANL_REC}	- 5,0	5,0		
Ток короткого замыкания выхода передатчика, мА, доминантное состояние, при: Uo_CANH = - 10 B	I _{OS_CANH}	- 250,0	- 50,0		
Ток короткого замыкания выхода передатчика, мА, доминантное состояние, при: Uo_canl = 18 B	Ios_canl	50,0	250,0		
Время задержки распространения передатчика при переходе из рецессивного в доминантное состояние, нс	t _{PHL_TXD}	_	90,0	25,	
Время задержки распространения передатчика при переходе из доминантного в рецессивное состояние, нс	t _{PLH_TXD}	_	150,0	125, - 40	
Время задержки распространения передатчик—приемник при переходе из рецессивного в доминантное состояние, нс	t _{PHL_RXD}	_	160,0		
Время задержки распространения передатчик—приемник при переходе из доминантного в рецессивное состояние, нс	t _{PLH_RXD}	_	200,0		
Время задержки распространения приемника при выключении, нс, при: $U_{RS} = U_{CC}$	t _{PHL_WAKE}	_	500,0		
Время задержки включения при переходе из режима «Ожидание» в режим «Нормальный» доминантное состояние, мкс	ton_stby	_	4,0		
Время нарастания дифференциального выходного напряжения передатчика, нс	t _r	15	80		
Время спада дифференциального выходного напряжения передатчика, нс	\mathbf{t}_{f}	15	80		

Наименование параметра,	нное чение етра	1	рма метра	атура 1, °С	
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С	
К5559ИН14	AFI	<u>I</u>	<u> </u>		
Опорное напряжение в режиме «Нормальный», В, при: -50 мкА $<$ I_O $<$ 50 мкА	U _{REF}	0,45·U _{CC}	0,55·Ucc	25,	
Опорное напряжение в режиме «Ожидание», В, при: $-5 \text{ мкA} < I_O < 5 \text{ мкA}$	Uref_stby	0,4·U _{CC}	0,6·Ucc	125, - 40	
К5559ИН14	БFI				
Ток потребления, режим «Выключено», мкА, при: $U_{SHDN} = U_{CC}$	I _{CC_SHDN}	_	10,0		
Входной ток высокого уровня, мкА, вход SHDN,	I _{IH_SHDN}	10,0	150,0	25,	
Входной ток низкого уровня, мкА, вход SHDN	I _{IL_SHDN}	- 10,0	10,0	125, - 40	
Время задержки включения при переходе из режима «Выключено» в режим «Нормальный» доминантное состояние, мкс	ton_shdn	_	6,0		
К5559ИН14	BFI				
Ток потребления, режим «Выключено», мкА, при: $U_{nSHDN} = 0 \ B$	I _{CC_SHDN}	_	30,0		
Входной ток высокого уровня, мкА, вход nSHDN	I _{IH_nSHDN}	- 10,0	10,0	25,	
Входной ток низкого уровня, мкА, вход nSHDN	I _{IL_nSHDN}	- 20,0	- 1,0	125, - 40	
Время задержки включения при переходе из режима «Выключено» в режим «Нормальный» доминантное состояние, мкс	t _{ON_SHDN}	_	6,0		
Примечание – n в названии вывода обозначает инверсию					

Микросхемы устойчивы к воздействию статического электричества с потенциалом не менее 2 000 В.

9 Предельно-допустимые характеристики

Таблица 6 – Предельно допустимые и предельные режимы эксплуатации микросхем

	4)	Норма параметра				
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно допустимый режим		Предельный режим		
	Бу 06с па	не менее	не более	не менее	не более	
Напряжение питания, В	U_{CC}	4,5	5,5	-0,3	6,0	
Входное напряжение высокого уровня, В на выводах: ТХО K5559ИН14AFI TXD, SHDN K5559ИН14БFI TXD, nSHDN K5559ИН14BFI	U _{IH}	2,0	Ucc	-	U _{CC} +0,3	
Входное напряжение низкого уровня, В на выводах: TXD K5559ИН14AFI TXD, SHDN K5559ИН14БFI TXD, nSHDN K5559ИН14BFI	UıL	0	0,8	- 0,3	_	
Входное напряжение в режиме «Нормальный», В, на входе RS	U _{I_RS}	0,0	0,3·U _{CC}	-0,3	_	
Входное напряжение в режиме «Ожидание», В, на входе RS	U _{I_STBY}	0,75·U _{CC}	Ucc	_	U _{CC} +0,3	
Дифференциальное пороговое напряжение приемника, B, при: $-10~\mathrm{B} \leq (\mathrm{U_{O_CANH}},\mathrm{U_{O_CANL}}) \leq 10~\mathrm{B}$	Uтн	0,5	0,9	_	_	
Дифференциальное пороговое напряжение приемника, B, при: $U_{RS} = U_{CC}$, $-10 \text{ B} \leq (U_{O_CANH}, U_{O_CANL}) \leq 10 \text{ B}$	U _{TH_STBY}	0,5	0,9	-	_	
Входное напряжение, В, по выводам CANH, CANL	Ucanh Ucanl	- 10,0	18,0	-40	40	
Входное синфазное напряжение приемника, В	U _{CM}	- 10,0	10,0	_	_	
Скорость обмена информации, Кбит/с, при: $U_{RS} = 0$ В	$f_{ m DR}$	_	1 000	_	_	
Сопротивление нагрузки, Ом	$R_{\rm L}$	45	_		_	
Емкость нагрузки, пФ	C _L	_	100	_	_	

Примечание — Не допускается одновременное задание двух предельных режимов

10 Справочные параметры

Таблица 7 – Справочные параметры микросхемы

Наименование параметра,	Буквенное	Норма па	араметра	Температура	
единица измерения	обозначение параметра	не менее	не более	среды, °С	
Температура срабатывания защиты, °С	T_{THP}	16	55	_	
Температура отпускания защиты, °С	T_{THN}	15	50	_	
Гистерезис температур срабатывания/отпускания, °С	$\Delta { m T}_{ m TH}$	15		_	
Гистерезис дифференциального порогового напряжения приемника, мВ	ΔU_{TH}	80,0			
Входное сопротивление приемника, кОм	$R_{\rm I}$	15,0	40,0		
Входное дифференциальное сопротивление приемника, кОм	R_{I_DIFF}	30,0	100,0	25, 125,	
Соответствие входных сопротивлений приемника, %	ΔR_{I}	- 3,0	3,0	- 60	
Входная емкость приемника, пФ	C_{I}	_	40		
Входная дифференциальная емкость приемника, пФ	C_{I_DIFF}	_	20		

11 Габаритный чертеж

Рисунок 5 — Микросхема в корпусе DFN8 $5 \times 6 \times 0.75$ (1,27)

12 Информация для заказа

Обозначение	Маркировка	Тип корпуса	Температурный диапазон, °С
К5559ИН14АFI	3105	DFN8 5×6×0,75 (1,27)	от –40 до 125
К5559ИН14БFI	3106	DFN8 5×6×0,75 (1,27)	от –40 до 125
К5559ИН14ВFI	3107	DFN8 5×6×0,75 (1,27)	от –40 до 125

Условное обозначение микросхем при заказе в договоре на поставку и в конструкторской документации другой продукции должно состоять из:

- наименование изделия микросхема;
- обозначения типа (типономинала);
- обозначения технических условий ТСКЯ.431000.003ТУ;
- обозначения спецификации ТСКЯ.431323.049СП.

Пример обозначения микросхем:

Микросхема K5559ИH14AFI – ТСКЯ.431000.003ТУ, ТСКЯ.431323.049СП.

Лист регистрации изменений

No	Дата	Версия	Краткое содержание изменения	№ <u>№</u> изменяемых
п/п	Диги	Берепл	прилюе водержиние поменения	листов
1	19.08.2025	0.1.0	Введена впервые	
2	15.09.2025	0.2.0	Добавлена рекомендация по подключению	7
			установочной площадки корпуса в р. 4.	
			Уточнения в таблице истинности	9
3	24.09.2025	0.2.1	Исправлена опечатка в таблице электрических	1.4
			параметров в строке параметра U _{OH_RXD}	14
4	19.11.2025	0.2.2	В «Основные характеристики микросхемы»	1
			добавлены параметры тепловое сопротивление	
			и уровень чувствительности к влаге MSL;	
			Раздел 4 дополнен	7